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The three-dimensional particle paths due to a helical beat pattern of the flagellum of
a sessile choanoflagellate, Salpingoeca Amphoridium (SA), are modelled and compared
to the experimental observations of Pettitt (2001). The organism’s main components
are a flagellum and a cell body which are situated above a substrate such that the
interaction between these entities is crucial in determining the fluid flow around the
choanoflagellate. This flow of fluid can be characterized as Stokes flow and a flow
field analogous to one created by the flagellum is generated by a distribution of
stokeslets and dipoles along a helical curve.

The model describing the flow considers interactions between a slender flagellum,
an infinite flat plane (modelling the substrate) and a sphere (modelling the cell
body). The use of image systems appropriate to Green’s functions for a sphere
and plane boundary are described following the method of Higdon (1979a). The
computations predict particle paths representing passive tracers from experiments
and their motion illustrates overall flow patterns. Figures are presented comparing
recorded experimental data with numerically generated results for a number of
particle paths. The principal results show good qualitative agreement with the main
characteristics of flows observed in the experimental study of Pettitt (2001).

1. Introduction
As motivation for the study of filter feeding currents around sessile microscopic

organisms, we consider the motion of particles around Salpingoeca Amphoridium (SA),
a choanoflagellate. This organism belongs to the phylum Protozoa and we investigate
this specific organism due to the availability of experimental data provided in Pettitt
(2001). The paths taken by particles are important when investigating the optimum
feeding patterns of these organisms. The model replicates the main features of the
organism along with the associated interactions due to the physical boundaries.

Figure 1(a) shows a photograph of SA which can be compared to the sketch in
figure 1(b). Typically, we can describe SA from the base upwards as consisting of,
first, a stalk attached to a substrate (which maybe a rigid surface or one covered in
mucus) and joined at the other end to the cell. In the experiments from which we
have taken the data, the substrate was a human hair. In some cases, we also find
organisms directly attached to the substrate. The flagellum, which emerges from the
opposite pole of the cell body causes the fluid to circulate around the organism. A
collar made up of fine finger-like projections, called micro-villi, emerges from the cell
body and extends upwards and outwards around the flagellum. The collar is the filter
where particles may become trapped before being transported close to the base of the
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Figure 1. (a) A photograph and (b) an illustration of Salpingoeca Amphoridium showing details of
the scale and structure. The photograph is magnified approximately 1000 times and the illustration
is not to scale. The figure shows details of microspheres in the fluid, attached to the collar and at
the base of the collar where one is being engulfed by the cell membrane.

flagellum (i.e. the ‘mouth’ region) where the particles can be engulfed by phagocytosis.
Alternatively, the collar may not retain the intercepted particles, providing another
method by which mixing may be increased due to the release back into the fluid of
these particles at a later time. This is explored in detail in Shimeta & Jumars (1991)
who investigate various particle interception and retention methods.

In experiments, the particle size has been investigated to consider the effect on
retention of nutrients by SA. The latex microspheres used by Pettitt (2001) were 0.5 µm
in diameter. For the purpose of the model, we consider point particles influenced by
the flagellum in the same manner as particles in experiments, to give a perspective on
the flow fields. We do not include the stalk’s influence in the model because we assume
that the effect of the cell body has a much greater influence on the fluid flow than
the stalk. As in Higdon (1979a), and for simplification, we neglect the addition of the
collar at this stage. Due to the relative size of micro-villi compared to the cell and
flagellum, this simplification is shown to provide a good initial approximation to the
problem. Another simplification is the consideration of just one organism because in
nature there generally exists an interaction among many of these organisms. However,
by initially considering the model for the case of a single cell and flagellum system,
we could infer the types of flow patterns we expect around a system where there is
an interaction between more than one organism. Blake, Otto & Blake (1998), Otto,
Yannacopoulos & Blake (2001) and Orme, Otto & Blake (2001a, b) consider various
axisymmetric and two-dimensional flow interactions between two displaced forces
which can be considered indicative of the way two adjacent organisms may interact,
in some cases leading to chaotic mixing.

Typical dimensions of SA are of microscopic length scales implying that the
Reynolds number is very small and consequently viscous forces dominate, leading to
Stokes flow equations for modelling purposes. For example, the length of the flagellum
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is typically 20 µm whilst the cell body has diameter 5 µm, see figure 1(b). These
length scales together with the environmental factors such as the characteristic speed
(100 µm s−1) and the dynamic viscosity (10−2 g µm−1 s−1) imply this quantification of
the Reynolds number. References to small Reynolds numbers for a range of problems
involving micro-organisms are given in Brennen & Winet (1977).

We extend the method initially given by Higdon (1979a) beyond the range of that
work to investigate flow patterns. Lighthill (1976) gives an excellent overview and
review of flagellar hydrodynamics, encompassing flagellar motions and flow fields
generated by a flagellum; he later revisited the subject, see Lighthill (1996). Higdon
(1979a) relies on using the method of distributing singularities along the centreline of
the flagellum to model the organism, along with a number of simplifying assumptions.
Following this, the appropriate image system satisfying the boundary conditions in
an approximate way is developed in greater detail in § 2.4. This leads to a complicated
set of singularities, see Blake (1971) and Higdon (1979b).

The far-field structure due to the stokeslet and image system near a plane boundary
will be shown to be particularly relevant to particle path behaviour. Whilst the helical
beat pattern yield vertical and horizontal forces of the same magnitude, the far-field
decay of the velocity field for the vertical force is much weaker, being O(r−3) compared
to that of the horizontal force which is O(r−2). Furthermore, the vertical force leads
to a toroidal eddy structure whilst the horizontal force yields a stresslet far field with
radial streamlines. It will be seen that particles in the far field have a predominantly
radial motion superimposed on a loop structure.

The flagellar beat of SA occurs in three dimensions with a helical wave shape,
the type of beat used during this study. The first part of § 2 formulates the helical
beat pattern, extending the planar case in Higdon (1979a). Note that in later work,
Higdon (1979c) does consider helical waves but with regard to the propulsion of a
motile organism rather than a sessile organism. This initial formulation of the case of
the helical wave includes considering the image systems required to satisfy the no-slip
boundary conditions on the wall, the cell body and the flagellum.

Section 3 presents results of paths traced by particles in three-dimensional space.
By varying the parameters of the problem, we are then able to compare and contrast
our results to those observed experimentally by Pettitt (2001). Discussion of the work,
including how improvements have been incorporated into previous work, is presented.
We finally conclude in § 4 with a brief summary and details of possible extensions.

2. Representing and modelling the flow field
By specifying the shape of the flagellum as a function of time, we can determine

the velocity induced on particles within the fluid due to the forces created by the
flagellum using a distribution of singularities along the centreline. First, the form of
the centreline of the curve along which we position stokeslets and dipoles to represent
the flow field induced by the beating flagellum is presented. The image system to
satisfy conditions on any boundaries within the problem is then constructed leading
to an approximate representation of the system.

2.1. Kinematics

Introducing a function to represent the flagellum will allow one to determine the
boundary conditions which must be satisfied to obtain an approximate solution
to the problem in terms of the force generated along the flagellum. The forces
distributed along the flagellum vary depending on position and time but for a helical
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Figure 2. Features of the three-dimensional model: (a) the rotating coordinate system with the
axis of the flagellum coinciding with both the laboratory frame (non-primed coordinates) and the
rotating flagellum frame (primed coordinates); (b) the inverse point, y∗, in a sphere; (c) the image
point, y̌, in a plane; and (d ) the velocity components along the centreline of the flagellum, the
sphere representing the cell body with diameter 0.2 units, the flagellum of length 1.0 unit whilst the
substrate (not shown) is parallel to the (y, z)-plane and cuts the x-axis at 0.9 units below the origin.

wave they will have the same form throughout the beat cycle. This property is
exploited to investigate the interaction of the forces with a tracer particle. The forces
and hence the velocities created within the fluid around SA can be determined by
simply changing the line along which the forces of the flagellum lie. The velocity of
any tracer is determined once the position of the flagellum and the location of the
associated forces with respect to the tracer are known. Section 2.2 introduces the
rotating coordinate system to describe how the flagellum, cell body and substrate
boundary conditions change with time.
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Figure 2(a) (based on figure 1 in Higdon 1979a but showing rotating axes) shows
the model we use to describe the coordinate axes relative to the helical wave pattern,
cell body and substrate in three-dimensional space. We can define a wave form as in
Higdon (1979a), such that

Y (X, t) = E(X −X0)α sin[k(X −X0)− ωt],
Z(X, t) = E(X −X0)α cos[k(X −X0)− ωt],

}
(2.1)

where X = (X,Y (X, t), Z(X, t)) describes any point along the flagellum and X0 is the
X-coordinate giving the height of the base of the flagellum. The wave speed is c = ω/k
in the positive x-direction, where ω is the radian frequency and k the wavenumber. The
parameter α describes the amplitude of the wave, which grows gradually from the base
and reaches its maximum about a third of the way along its length. Incorporating the
exponential function E(x) = 1 − exp(−(kEx)2) into expressions (2.1) gives a realistic
waveform. In this case, kE = 5 gives E(x) ≈ 0.9 when x = 0.3. This function also
satisfies the condition that the flagellum is attached radially to the cell body with
radius A, i.e. E(0) = E ′(0) = 0.

For consistency, we assume the flagellum is inextensible. We will divide the flagellum
into segments of equal length, in this case using arc length as the length dimension.
The beginning and the end of each segment are denoted by si and si+1 respectively,
where i = 0, . . . , N − 1 and the flagellum is split into N intervals. The arc length is
given by the usual formula

s =

∫ X

X0

[
1 +

(
∂Y

∂X

)2

+

(
∂Z

∂X

)2
]1/2

dX. (2.2)

Each of the N segments has length L/N, where the total length of the flagellum is
L. Substituting into equation (2.2) the known values of each si (for i = 1, . . . , N) we
can determine the corresponding X-coordinates and thence, from (2.1) the Y - and Z-
coordinates. (Notice that si can be described as giving the arc length from the base of
the flagellum to the end of the ith interval). This is calculated via interpolation which
allows one to accurately find the corresponding value of X for a known value of s.

We now have a vector describing the motion of a particular segment of the
flagellum for each time step and for each arc length position (si). We assume the
flagellum is approximated using linear segments, and the midpoint of each segment,
smi , can be defined to lie equidistant between each si and si+1 along the centreline of the
flagellum. These coordinates are used to enable the derivation of the forces created
by the singularities which are taken to be situated at the midpoint of each flagellum
segment. Hancock (1953) describes the method we use to place a distribution of
stokeslets and dipoles along the centreline of the flagellum. By assuming that the
flagellum can be described as slender, i.e. as having a small radius compared to its
length, one can find the velocity induced at any segment on the flagellum. Therefore,
Hancock (1953) has shown that by assuming the length of a segment (|si+1 − si|)
to be large compared to the flagellum radius, the consideration of a distribution of
singularities within a segment making a contribution to the velocity of the segment
is a sufficiently good representation of the forces. Since this process can be repeated
for all segments, we can build up the velocity profile created by the entire flagellum.

2.2. Particle paths – fixed and rotating coordinate frames

We study two coordinate axes, a rotating frame and a laboratory frame, whose origins
and vertical axes are coincident and fixed, illustrated by figure 2(a). The rotating frame
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is taken to be fixed with respect to the flagellum and the coordinates of general points
in this frame are given by X ′. The laboratory frame, with coordinates labelled as X ,
is fixed with respect to the cell body and the plane. Therefore, within the laboratory
frame, the flagellum appears to be rotating about the vertical axis with an angular
velocity ω. Moving between the two reference frames requires a transformation matrix
defined by

T (ωt) =


1 0 0

0 cosωt − sinωt

0 sinωt cosωt

 with X ′ = T (ωt)X ,

giving the coordinates in the rotating frame from the known coordinates of the
laboratory frame. The transformation back from the rotating to the body frame
simply replaces ωt with −ωt in the matrix T . One must initially calculate the particle
positions within the rotating frame because this is the frame in which the force is
evaluated. These points can then be translated to the laboratory frame to obtain a
picture of the trajectory as observed in the experimental studies of Pettitt (2001).

Translation from the laboratory to the rotating frame will take the form X ′ = T
(ωt)X , where X ′ can then be acted upon by the velocity field due to the flagellum.
We assume X ′ moves to X ′ + δX ′ under the action of this force. This is the new
position in the rotating system which is needed to translate back to the laboratory
frame. If the frame has moved through an angle ωt since the start of the motion, then
XNEW = T (−ωt)[X ′ + δX ′] gives the new position of the particle in the laboratory
frame. From here, we use the particle position with respect to the laboratory frame
to construct the particle trajectory. We finally must find the position of the particle
within the rotating frame which has moved through a further angle of ω δt. Hence
repeating the translation back to the rotating frame gives X ′NEW = T (ω(t+ δt))XNEW.
This final translation step is a subtle difference, but shows how one cannot simply
consider the effect the force has on the points within the rotating frame alone due to
the small rotation of the flagellum frame.

As well as examining the rotating axes, it is important to consider the boundary
conditions of the problem. We must always solve the same physical system, even if
the relative geometry used to describe the problem has changed. We represent the
velocities as

V F = V B − ω × X ,
where V F is the velocity in the rotating flagellum frame, and V B is the velocity in the
laboratory frame. This yields the boundary conditions on the cell body and plane in
the flagellum frame to be of a non-zero velocity whilst the flagellum will have zero
velocity. This is implemented by equation (2.25) in § 2.6.

2.3. The singularity structure

This section gives details of each of the singularities and image systems needed to
find an approximate representation of the flow fields around SA. For simplicity, we
initially present results for the fixed coordinate system but move to the rotating
coordinate system presented in § 2.2 once all the principles of the physical problem
are defined.

Higdon (1979a) modelled an organism which he assumed had a smooth slender
flagellum and a spherical cell body, with the height of the cell body a fixed distance
above the substrate. The flagellum was represented by placing stokeslets and dipoles
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along its centreline. Because the flagellum is attached to a cell body above a substrate,
the interaction between these separate entities (the sphere and the plane) needs to be
taken into account. Green’s functions, in terms of singularities and image systems, are
used to allow the boundary conditions to be satisfied approximately to second order.

We consider a very thin flagellum where we take its length, L, to be much greater
than the flagellum radius, a (i.e. L� a) and the centreline to be a helical wave
(2.1). Along this line, we distribute both stokeslets and dipoles with their associated
image systems. Due to the approximations of a slender body, the image system
and the distribution of singularities, Higdon (1979a) is able to state that this model
is representative of the effects of the flagellum within this system. Following the
progression of particles over time around the model of a single organism will lead
to insight into how well mixed the particles can become and allows comparison with
the experimental results in Pettitt (2001). Interesting comparisons to the flow fields
created in the axisymmetric case where a single point force creates an approximate
representation of the flagellum could also be made (Orme et al. 2001a, b). In previous
axisymmetric work, where there are two dimensions of space and the third dimension
is time, chaos can be studied due to the action of two alternating stokeslets (Blake
et al. 1998; Otto et al. 2001).

The problem, defined by Higdon (1979a), initially requires the use of a stokeslet,
a Stokes-doublet and a dipole, which give the fundamental building blocks for the
model. For all of these singularities, we regard the force to be acting at a point y
whilst the tracer which the force is affecting is situated at x, i.e. y is a location of
the singularity on the centreline of the flagellum, whilst x is the general position of a
particle within the fluid. The stokeslet is given by

Sjk(x, y) =
δjk

r
+
rjrk

r3
, (2.3)

where we define r = |x−y| and rm = (xm−ym). This definition is carried throughout the
following work, along with δjk which is the Kronecker delta function. This stokeslet
creates a velocity at x, due to a force with strength and direction f acting at y, defined
by

uj(x) = Sjk(x, y)fk/8πµ.

Here, the parameter µ represents the viscosity of the fluid. The subscripts j or k (as
for all the following work) indicate the components of the force, f, or the velocity, u,
with respect to direction.

The second type of singularity, a Stokes-doublet, can be derived by using the
operator ∂/∂yl on equation (2.3); due to linearity this gives another solution to the
Stokes equations:

SDjkl(x, y) =

(
−δkl
r3

+
3rkrl
r5

)
rj +

(
rlδjk − rkδjl

r3

)
. (2.4)

If the Stokes-doublet has tensoral strength σkl , then the velocity at the point x due to
a Stokes-doublet acting at point y is given by

uj(x) = SDjkl(x, y)σkl/8πµ.

Physically, the Stokes-doublet consists of two components. From equation (2.4), the
first is the symmetric component called a stresslet, representing the straining motion
of the fluid. The second is the antisymmetric component called a rotlet. Physically,
this generates a flow due to the action of a torque.
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Finally, we operate on equation (2.3) with respect to − 1
2
∇2
y = − 1

2
∂2/∂y2

k to find the
dipole, given by

Djk(x, y) =
−δjk
r3

+
3rjrk
r5

, (2.5)

which has the same tensoral structure as the stokeslet and is critical to the development
of slender body theory, Lighthill (1976). Again, the velocity field u at a point x created
by a dipole of strength and direction d which is situated at y, is

uj(x) = Djk(x, y) dk/4π.

Equations (2.3), (2.4) and (2.5) give all the components we require to be able to
construct the Green’s function enabling the description of the fluid flow around the
flagellum, cell body and substrate whilst satisfying the relevant boundary conditions
by the introduction of image systems.

2.4. Construction of the image systems

As mentioned at the start of § 2.3, the distribution of singularities along the flagellum
creates a velocity field which alone does not satisfy all the boundary conditions of
the problem to a satisfactory degree of accuracy. By the introduction of specific
Green’s functions, which include the image systems for these singularities, the correct
combination of singularities can be considered such that we satisfy all the given
boundary conditions to second order with respect to the radius of the cell body over
the distance from the plane. Once we have satisfied the no-slip conditions on the
plane boundary (i.e. the substrate) we need to consider how the introduction of the
image singularities have affected the other boundary conditions, such as the no-slip
condition on the sphere (i.e. the cell body). Hence, we simultaneously have to consider
the sphere’s surface, and the sphere and boundary interaction. We present first the
image system for a sphere, second that for a plane and finally combine the two,
enabling all the boundary conditions to be satisfied approximately to second order,
as above.

The Green’s function for flow external to a sphere is

GSjk(x, y) = Sjk(x, y) + S∗jk(x, y), (2.6)

where S∗jk represents the image system located within the sphere. The velocity at any
point x due to a point force f acting at a point y in the presence of a sphere is thus

uj(x) = GSjk(x, y)fk/8πµ. (2.7)

The components of this equation have the same definitions as those given after
equation (2.3). The expression for S∗jk is a lengthy algebraic one and details can be
found in Appendix A and Higdon (1979a). However, physically it is informative to
consider how the expression is constructed with regard to the forces acting within
the system. The image system involves considering singularities associated with the
inverse point y∗ defined as

y∗ =
A2

|y|2 y =
A2

|y|
(
y

|y|
)
,

which is the image in the sphere of the point y. In this problem, the origin and
the centre of the sphere are coincident, see figure 2(b). Higdon (1979a) gives S∗jk in
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terms of y∗ as derived by Oseen (1927) along with a simpler expression in terms of
individual fundamental singularities. As an approximation to the Oseen expression for
the image system, one can consider the first- and second-order terms in an expansion
of the expression for the image system about the origin, when the radius of the sphere
is much smaller than the distance of the stokeslet from the origin, i.e. A� |y|. The
physical construction of this image system can be explained in terms of the radial
and transverse components of the stokeslet. Radially, the images of a stokeslet are:
a stokeslet, a dipole and a stresslet all situated at the inverse point. Transversely, the
images are: line distributions of stokeslets, dipoles and Stokes-doublets which stretch
from the origin to the inverse point. By neglecting terms O(A2/|y|2) which are very
small, Higdon (1979a) gives an expression for S∗jk which lends itself to numerical
methods better than Oseen’s complicated expression.

Now that we have an expression for the image of a stokeslet, S∗jk(x, y), we can use
the following rule to enable one to find images of the higher-order singularities, such
as the image of the Stokes-doublet and the dipole, which are also required to enable
the boundary conditions to be satisfied. This rule specifies that if we have a solution
of the Stokes equations defined by a certain differentiable operator, then the image
system in the sphere for this solution (singularity) is defined by the same differential
of the image of the solution.

The strength of the distribution of stokeslets along the flagellum, which we will
calculate in § 2.6, and their interaction with the sphere, enable the calculation of the
force and couple acting on the sphere, therefore giving the flow fields generated by the
flagellum. The interaction of the introduced singularities must also be considered as
they too will have image systems due to the interaction between the flagellum, plane
and sphere. These image systems will therefore affect the calculation of the force and
moment on the sphere as well as the flow fields. Hence, using the rule defined above,
the images of a Stokes-doublet and a dipole in the sphere are given by

∂(S∗jk)/∂yl = SD∗jkl (x, y), −∇2
y(S

∗
jk)/2 = D∗jk(x, y).

A concise and complete set of sphere images are available and the explicit versions
can be found in both Appendix A and Higdon (1979a) who decomposes each image
system into its simpler first- and second-order terms as previously explained for the
image system of the stokeslet.

The image system for a plane requires image singularities at the image point y̌.
Defining p to be a unit vector perpendicular to the plane (the substrate in this case)
and pointing in the direction of the fluid (upwards for an organism situated above
the substrate) then we can define y̌ as in figure 2(c) by

y̌ = y − 2h(y)p, (2.8)

where h(y) is the distance of the point y from the substrate. The Green’s function for
the half-space, GPjk , is

GPjk(x, y) = Sjk(x, y) + Š jk(x, y), (2.9)

where Š jk is the image system for the plane and consists of a stokeslet, a Stokes-

doublet and a dipole, all situated at the image point y̌ (with Š jk given explicitly in
Appendix B).

In the case of the image system for the plane, we have no difficulty in expressing
the terms for the image system in the plane. However, in the case of the sphere it
was necessary to distribute the singularities such that there were each of a stokeslet,
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a dipole and a stresslet all situated at the inverse point as well as a line distribution
of stokeslets, dipoles and Stokes-doublets from the origin to the inverse point. This
ensured that both radial and transverse components of the boundary condition on
the sphere were satisfied. In the case of the plane, there is no such distribution of
singularities owing to the simpler geometry of a plane compared to a sphere and so
the resulting image system is more apparent.

Higdon (1979a) makes an initial conjecture (a first approximation) that the Green’s
function must be composed of the stokeslet along with both the image systems for
the plane and the sphere, i.e. the combined image system, to represent the physical
system. This gives

Gjk(x, y) ≈ Sjk(x, y) + S∗jk(x, y) + Š jk(x, y). (2.10)

However, we also have the problem of considering the images of the other singularities
which are present in equation (2.10), i.e. the contribution from the terms S∗jk and Š jk ,
and the effects their combined force distributions induce on the boundary conditions.
Although the individual image systems for the sphere and plane may satisfy the
boundary conditions independently, the combined effect induced by their images does
not. Therefore, we need to consider the image of the plane’s image system (Š jk) in

the sphere, denoted by Š ∗jk . Again the reason for its form is easily understood by

examining a breakdown of the terms included in Š∗jk (see Appendix B). Briefly, the

image system for the plane consists of a stokeslet, a Stokes-doublet and a dipole, and
so by replacing all of these singularities by their images in the sphere, we have found
the images of the plane image system in the sphere. Appending equation (2.10), the
next degree of approximation for the combined Green’s function is

Gjk(x, y) ≈ Sjk(x, y) + S∗jk(x, y) + Š jk(x, y) + Š∗jk(x, y). (2.11)

This expression still does not satisfy the boundary conditions to second order within
our model. For an improved approximation we will need to consider terms from both
S∗jk and Š jk whose plane images are not in (2.11).

This process is broken into three stages to enable all the boundary conditions to
be satisfied by determining which singularities are violating which specific boundary
conditions. First, the leading-order terms of the plane images for the terms S∗jk and

Š jk are considered. We replace the stokeslets of these leading-order terms,

−3{ASkl(0, y)Sjl(x, 0) + AŠkl(0, y)Sjl(x, 0)}/4,
by their plane images

−3{ASkl(0, y)Š jl(x, 0) + AŠkl(0, y)Š jl(x, 0)}/4. (2.12)

However, in adding equation (2.12) to equation (2.11) and correcting the velocity on
the plane, we have induced another velocity on the sphere’s surface. We minimize this
velocity in an attempt to satisfy the boundary conditions by adding the sphere image
given in (2.12) to equation (2.11). Expression (2.12) can be rewritten to satisfy this
condition as

−3{ASkl(0, y)Š∗jl(x, 0) + AŠkl(0, y)Š∗jl(x, 0)}/4. (2.13)

Hence, adding both (2.12) and (2.13) to equation (2.11), we have satisfied the boundary
conditions on the plane and sphere to second order.
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The final Green’s function when considering the flow due to a force acting at y in
the presence of a sphere within the half-plane above a plane boundary is

Gjk(x, y) = Sjk(x, y) + S∗jk(x, y) + Š jk(x, y) + Š∗jk(x, y)

−3{A[Skl(0, y) + Š kl(0, y)][Š jl(x, 0) + Š∗jl(x, 0)]}/4, (2.14)

where again the velocity created at x due to the system described is

uj(x) = Gjk(x, y)fk/8πµ.

This velocity is due to the contribution of only a single force at position y which
we assume to lie at some location along the centreline of the flagellum. Section 2.5
considers the effects of many of these forces distributed along a curve defining the
centreline of the flagellum. This enables the velocity at any position x to resemble
velocities created within a flow field around any organism similar to that which we
have chosen to model.

2.5. Flow fields associated with singularities representing the flagellum

The velocity induced by the whole flagellum may be represented in terms of the
following integral by (the currently unknown) force and dipole distribution along the
central axis of the flagellum:

uj(x) =

∫ L

0

[
Gjk(x,X (s))

fk(s)

8πµ
+ Djk(x,X (s))

dk(s)

4π

]
ds. (2.15)

The expression for the velocity on the left-hand side of equation (2.15) can be
obtained from the boundary conditions, which for the flagellum can be determined
from partially differentiating equation (2.1) with respect to time, t, to give

u =
∂X

∂t
=

(
∂X

∂t
,
∂Y

∂t
+
∂Y

∂X

∂X

∂t
,
∂Z

∂t
+
∂Z

∂X

∂X

∂t

)
. (2.16)

The differential terms are calculated from equation (2.1) by simply differentiating the
equation defining the flagellum centreline. The term ∂X/∂t requires more involved
calculations in most cases but in the case of a circular cylindrical helical wave,
∂X/∂t ≡ 0.

A relation between the forces created by the stokeslets and the dipoles can be
exploited in the computations. Higdon (1979a) stated that the dipole strength was
determined by the component of the stokeslet normal to the centreline:

dk =
−a2

4µ
(δkl − TkTl)fl, (2.17)

where T is defined as the unit tangent vector to the flagellum. Therefore, we rewrite
equation (2.15) so that it only contains one unknown, i.e. fk(si) which gives the force
on the ith segment of the flagellum in the kth direction. A detailed explanation is
given in Lighthill (1996) for how this relationship is derived from to the distribution
of stokeslets and dipoles along the centreline of the flagellum.

2.6. Solving to find the force, f

First, rewrite equation (2.15) so that the right-hand side is in terms of known
expressions for the singularities introduced in § 2.3 and the forces fk(s). This will
allow numerical calculation and manipulation to determine the unknown forces fk(si)
for each position si along the flagellum in equation (2.15).
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The boundary condition on the flagellum allows the evaluation of the left-hand
side of equation (2.15), i.e. the velocity of the fluid on the flagellum surface equals
the velocity of the flagellum surface. We consider this boundary condition at points
along the centreline instead of at the surface because the distribution of stokeslets
and dipoles is along the flagellum centreline. The Green’s functions need both the
coordinates where forces distributed along the flagellum act and the coordinates of
the point at which we are interested in recording the effects of the force. Dividing the
flagellum into ‘segments’, typically linear with end points at si and si+1, the force on
each of them acting at the midpoint, smi can be calculated.

Defining S
φ
jk as the sum of the image terms in equation (2.14), we can use the

definition given in Higdon (1979a) to re-express the relation involving the Green’s
function as

S
φ
jk(x, y) = Gjk(x, y)− Sjk(x, y), (2.18)

separating the image terms (from equation (2.14)) into those which require numerical
integration (terms from expressions (A 1), (B 1) and (B 2)) and the remaining terms
which can be analytically integrated. In our case, separation of the terms helps to
break the numerical problem down into discrete components. Each of the terms in
equation (2.18) has been interpreted in the preceding sections, making it easier to
evaluate for a large number of variables.

To numerically integrate (2.15) we begin by rewriting it using (2.18) as

uj(x) =

∫ L

0

{
[Sjk(x,X (s)) + S

φ
jk(x,X (s))]

fk(s)

8πµ
+ Djk(x,X (s))

dk(s)

4π

}
ds. (2.19)

Following Higdon (1979a), the flagellum length is divided into N equal segments and
within each we assume the force of the stokeslet, f, is constant. To find the force for
any given time will require incorporating the details of the rotating system into the
boundary conditions. We relate the forces created due to the singularities (fk) and
those due to the dipoles (dk) via equation (2.17), reducing the problem to solving for
fk alone. For the term S

φ
jk given in equation (2.18), we consider any nth interval and

more specifically the integral over a small length segment given by

Hjk(x,X (sn)) =
1

8πµ

∫ smn +δsn

smn−δsn
S
φ
jk(x,X (s)) ds; (2.20)

this integration needs to be evaluated numerically. The length of the segment is 2δsn,
which is taken to be small. Evaluating the induced velocity when considering the
N intervals requires a summation over all N segments along the total length of the
flagellum for all the terms Hjk , plus the other terms into which equation (2.19) is
decomposed. Hence we choose to express the remainder of equation (2.19) in terms
of the nth interval, allowing this summation over the N segments to give the value of
the velocity. We define Kjk as

Kjk =
1

8πµ

∫ smn +δsn

smn−δsn

{
Sjk(x,X (s))− a2

2
(δkl − TlTk)Djl(x,X (s))

}
ds, (2.21)

thus allowing one to write a simple equation re-expressing equation (2.19) as the
summation

uj(x) =

N∑
n=1

{[Kjk(x,X (sn)) +Hjk(x,X (sn))]fk(sn)}, (2.22)
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with fk the unknown force to be determined. Care needs to be taken at both the
proximal and distal ends of the flagellum to avoid singularities (see for example
Gueron & Levit-Gurevich 2001a, b; Gueron & Liron 1992). We note that at the
proximal end the flagellum shape and motion are carefully chosen. At the distal
end, the cross-sectional shape can be chosen to allow the singularity distribution to
terminate before the end of the flagellum.

Expression (2.17) gives a simplified method with which to consider the force
distribution. Its validity is due to considering the force on a small interval whose
effects become negligible compared to the rest of the forces along the flagellum
(Hancock 1953). The numerical expression (2.22) gives the velocity induced by the
singularity distributions along the flagellum, including the images in both the plane
and the sphere. The final stage to determine the values of fk is to substitute for the
boundary conditions on the flagellum so that one can evaluate the Green’s functions
and the flagellum velocity. The numerical scheme can then be implemented where
there exists only one unknown set of variables, fk . Using matrix inversion from
MatLab software, rather than an iteration method as in Higdon (1979a), we calculate
the values of fk acting at the midpoint of each segment along the flagellum. The
midpoint, for any qth interval, is denoted as X (smq ) within the Cartesian coordinate
system. Hence, equation (2.22) satisfies the boundary conditions on the flagellum in
the physical system when

uj(X (smq )) =

N∑
n=1

{[Kjk(X (smq ),X (sn)) +Hjk(X (smq ),X (sn))]fk(sn)}. (2.23)

Since the velocity of the flagellum centreline is given by equation (2.16) when
X = X (smq ), this must also give the left-hand side of equation (2.23) by the definition
of the no-slip boundary condition. The terms on the right-hand side of (2.23) are
easily calculated because we can express the Green’s functions numerically for any
coordinates X(smq ) from the singularities and image system expressions previously
defined. It is helpful to express the elements within the summation term as

Qjk(s
m
q , sn) = Kjk(X (smq ),X (sn)) +Hjk(X (smq ),X (sn)), (2.24)

which we refer to later when we investigate the solution via matrix inversion. However,
this is computationally expensive and is much simpler to undertake in a rotating frame
involving just one solution of equation (2.19). This yields a fixed helix and a rotating
spherical body and plane boundary. Thus the velocity boundary conditions now yield
no-slip on the flagellum and rigid body rotation on the sphere and plane boundary.
We can simply alter equation (2.23) to satisfy the boundary conditions within the
rotating frame, giving

uj(X (smq )) =

N∑
n=1

{[Kjk(X (smq ),X (sn))+Hjk(X (smq ),X (sn))]fk(sn)}−(ω×X (smq ))j , (2.25)

which can be solved once by a simple matrix inversion to find the forces along the
flagellum in the rotating frame.

The remaining work involves rearranging equation (2.25) so that we can determine
the unknown values of the forces created by the flagellum. Representing the force and
the velocity at the given points along the flagellum by two vectors, the summation
term given in equation (2.25) can be represented as a matrix which can therefore be
inverted. Hence for each time step, once we have calculated the right-hand side of
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(a) (b)

Figure 3. The outline of two specific SA (organisms (a) A and (b) C in table 1) and specific
particle paths taken from experimental observations. Both illustrate the eddy structure whilst (a)
also indicates the near-field ‘loopiness’.

equation (2.25) and then inverted the matrix which we call Q , from equation (2.24),
we can determine the value of f by simple matrix multiplication.

When the force is known, we can solve equation (2.22) for any given point within
the system because all the terms on the right-hand side can be calculated. The particle
position is calculated at each time step using an Eulerian scheme:

xnew = xold + v(xold)δt, (2.26)

where v(x) is the velocity at position x given by equation (2.22). This Eulerian
formulation will require the calculation of the velocity at each specific time. The
values for the initial point, xold, and the time step δt which are used in (2.26) are
either stated in the initial conditions of the model, or in the case of xold, known from
the preceding calculation. The value of the time step δt has been varied to assure
the fidelity of the results and the value used in the main corresponds to one fifth of
0.02 s as recorded from the experimental data (Pettitt 2001). Repeating this process
allows one to trace a particle’s position over many periods of the beat by recording
xnew over any length of time in the rotating frame. A simple translation back to the
laboratory frame with each time step reproduces the corresponding physical system.

3. Results and discussion
This section will illustrate some of the qualitative similarities between the numerical

calculations of particle paths and experimental results found in Pettitt (2001). First,
we present results concerning the action of the flagellum and then look at a number
of paths a tracer particle follows for a variety of different sets of parameters.

Figure 2(d ) illustrates the velocity on the surface of the flagellum at a nominal
time during a period of the beat. It is the forces created along the flagellum which
ultimately affect any particle or tracer within the flow. By studying figures similar to
figure 2(d ) and examining the magnitude of the velocity at points along the flagellum,
we know that the magnitude will remain the same throughout the problem, the
velocity only changing in direction due to the propagation of the helical wave of the
flagellum.
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A B C

Non-dim. (µm) Non-dim. (µm) Non-dim. (µm) Non-dim.
control

Flagellum radius 0.01 0.4 0.02 0.4 0.03 0.4 0.01
Cell body radius 0.1 2.5 0.13 2.4 0.15 2.5 0.17
Flagellum length 1 19.2 1 15.8 1 11.4 1
Height above substrate 0.9 11.4 0.46 8.8 0.56 6.4 0.22

Table 1. Dimensions of SA as taken from experimental results by Pettitt (2001) for one control and
three living organisms with a variety of physically different parameters. For each organism (A, B
and C) we show the dimensions in µm and the non-dimensionalized lengths in the adjacent column.

We investigate a representation of particle paths which will allow constructive
comparison of numerical results with experimental results. For both results, there are
a number of cases we choose to consider, each relevant to a different species or size
of choanoflagellate (as represented in table 1). We show how the numerics replicate
the key characteristics of the flow patterns recorded in experimental observations via
some representative figures. The comparisons of path lines will be dependent on the
dimensions of the relevant organism and so we consider a number of parameters.
Note that the effect of the collar is not present within these calculations, but one
could consider its virtual situation within the fluid. This would enable one to obtain
results about the interception of tracers with the collar along similar lines to the study
of Berg & Purcell (1977).

We present illustrations taken from experimental recordings and numerical inter-
pretations of particle paths. Figure 3 shows two traces from a video of an experiment
which observed a number of SA feeding, corresponding to organism A and C whose
dimensions are included in table 1. The particle paths are traced by polystyrene
spheres which have been introduced into the flow. The positions of these tracers are
recorded at a given time increment. The position of the specific choanoflagellate which
creates the flows is also included. This type of recording gives a two-dimensional rep-
resentation within a given depth of focus (approximately 5 µm) of what is in fact a
three-dimensional process. The flagellum or particles can therefore move out of the
field of focus as is clearly evident for the flagella in figure 3 which are out of focus.
This will mean the loss of some accuracy from the results when we compare these
video images with those generated from our numerical model which are obviously
fully three-dimensional. For this reason, figure 4, which illustrates the results of the
numerically generated particle paths, shows two different perspectives. Figure 4(a)
gives a fully three-dimensional representation so that the flagellum shape and cell
body are clearly seen. Figure 4(b) shows a slice of the three-dimensional space where
the depth of the slice is approximately twice the cell body diameter. This is shown
as a plane representation, similar to the view one would see down a microscope and
comparable to figure 3.

We now consider in more detail the numerical representations of particle paths
(figures 4 and 5) for the specific dimensions of the organisms labelled ‘control’ and
‘C’ in table 1. Altogether there are three cases motivated by experimental results
(columns two to seven in table 1) and one set of control parameters which was used
purely for numerical methods (column one in table 1). Comparing the four columns
all showing non-dimensionalized results for SA (given by the heading ‘Non-dim.’ in
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Figure 4. Graphics generated to show the recirculation of tracers seen within the fluid, for
organism C whose dimensions are given in table 1. (a) The paths followed by a particle around
the cell body and the flagellum. This is over long time and shows the total three-dimensional
representation including the eddies followed by the tracer. (b) A two-dimensional projection of
the three-dimensional numerics onto a plane. This creates an image similar to the representation
recorded from experimental observations.

table 1), one can see the first control test set is representative of the case where the
cell body is positioned approximately one flagellum length from the substrate. The
other three cases look at a range of parameters where the substrate distance from the
flagellum is smaller than the associated flagellum lengths.

We have taken measurements from figure 3(b) to compare with the paths generated
by numerical methods (presented in figure 4) involving an organism modelled with
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Experimental Numerical

Eddy Eddy Eddy Eddy Distance of eddy
width length width length from flagellum base

Org. A 0.11 0.07 0.25 0.64 1.07

Org. B 0.15 0.11 0.21 0.21 2.17

Org. C 0.26 0.37 0.31 0.54 0.74

Table 2. Measurements of specific eddies created around three organisms whose flow patterns we
investigate, non-dimensionalized with respect to H∗, the distance between the substrate and flagellum
base, to allow comparison between experimental and numerical results. Width and length are
interchangeable and merely suggest measurements taken in two mutually perpendicular directions.
The distance of the eddy from the flagellum base is the same for both sets of results to facilitate
comparisons of the correct eddy measurements.

the same dimensions. It is unrealistic to compare these results by observations alone
to see whether features from the numerical simulation of particle paths agree with
those found in experimental results. Therefore, we take measurements of the size
of the eddies created, their location and the behaviour of particles from a number
of different regions around the organism. By investigating trajectories which are
started in accordance with experimental results one creates a basis for numerical
procedures when beginning to generate realistic particle paths. The measurements
given in table 2 show how we start to look at comparisons between experimental and
numerical results. We have included measurements for various organisms (presented
in table 1) but only include figures for organism C. The measurements are in non-
dimensionalized form with respect to the distance from the substrate to the base
of the flagellum, H∗. We use H∗ because this distance can be easily measured from
the experimental records and is readily available from the numerics. We have found
agreement between size and position of eddies created by our numerical model and
experimental observations. Referring to both figure 4 and table 2, notice how the
eddies (the zig-zag patterns created as the particle moves) from the numerical results
are all slightly larger than those found experimentally. This could be due to the affects
of a greater viscosity of fluid, the presence of the collar within the physical system
which retards the motion of the particles or Brownian motion.

The collar may well influence motion near the cell. However it is splayed out
radially so that the gap between the collar filaments is many radii wide at the distal
end (Pettitt 2001). At the proximal end little flow occurs because of the no-slip
condition on the cell. Over one beat the mean migration due to Brownian motion
of the most commonly used particles (0.5µm) is approximately 0.5–1.0 radii yielding
an experimentally observable jiggling motion in the far-field motion. In terms of the
Péclet number its magnitude will vary from O(103) near the flagellum to O(1) in the
far field. Nevertheless Brownian motion may lead to enhanced mixing as noted in
the earlier study by Otto et al. (2001). However Brownian motion will be random
whereas the particle movement attributed to the flagellum will be deterministic with
characteristic ‘looping’ behaviour.

The experimental results are captured at time steps imposed by the type of recording
apparatus used. This shows fewer steps between each particle movement so that the
tracer appears to jump between one line and another. With the numerics however,
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Figure 5. The numerical trajectory of particles over time illustrating the recirculation of tracers
seen within the fluid. A representation of a scaled sphere and flagellum is given for completeness.
For this particular case, the parameters used are for the control organism in table 1. The substrate
would be situated 0.9 units below the origin for both figures. (a) The paths followed by two particles
around the cell body and the flagellum. Notice the eddies creating a continuous recirculation of
particles and the larger velocities close to the flagellum. (b) A view along the z-axis at a projection
of onto a two-dimensional plane. The eddies are now clearer. We see an elongation of the eddies
radially; note that the axes are equal.

the smaller time steps used allow a more complete picture in which the particles move
in a continuous manner. For example, to recreate the experimental recordings close
to the flagellum, we would only be required to sample the particle position every fifth
time step from the numerical results.

We have also considered the larger eddies (responsible for recirculating fluid)
which consist of many of the smaller eddies whose typical dimensions are displayed
in table 2. Again, eddies created via numerical methods are of a similar size and
dimension to those from the experimental observations but would appear to be more
helical than planar in structure. This may suggest a more elliptical path for the helix
than a circular one as used here. These large eddies create the mixing which is of
most interested from a biological viewpoint. They show the manner in which these
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X Y Z

Near y = 0.1 0.0111 0.0133 0.0161
Middle y = 0.35 0.0074 0.0416 0.0325
Far y = 1.0 0.0114 0.0159 0.0080

Table 3. The average displacement in all three coordinate directions (X,Y , Z ) of the trajectories
of two particles with initial positions given by (0.75, y, 0) and (0.76, y + 0.01, 0) where y varies
depending on the region, as given in the table. The trajectory is recorded over ten periods of the
flagellar beat.
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Figure 6. The distances by which two trajectories diverge for the three regions (near, middle and
far) around the organism. The horizontal axis gives the non-dimensional time whilst the vertical
axis shows the distance two particle paths diverge. Table 3 gives details of the initial location and
separation of the particles.

organisms circulate fluid to obtain a supply of nutrients from the otherwise stationary
fluid. Referring to figure 5 one can see a numerical representation of these larger
eddies obtained after several periods of the flagellum beat. Notice how the eddies
formed tend to be elongated in the radial direction due to the stresslet far field.
However, closer to the flagellum we see a marked vertical progression because of the
net vertical force.

It is also interesting to investigate the amount of spreading from various regions
by a method which looks at a number of points clustered a given distance from the
flagellum and compare the divergence of the trajectories within each such region.
We typically take two starting points separated by the distance of one flagellum
radius (taken as small) in two of the three coordinate directions. The particles are
allowed to move through ten periods of the flagellum beat cycle before we investigate
their divergence from one another. The three regions we study around organism C
are defined in table 3 and occur at approximately the same vertical position as the
flagellum tip; they horizontally are positioned in what may be called the near, middle
and far fields. Table 3 gives the average separation of these trajectories calculated
by the general mean, along with details of their initial positions relating to the three
regions described. Figure 6 shows how the magnitude of the separation of trajectories
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changes over ten periods of the beat. This reinforces data from table 3 because we can
see that particles typically situated within the mid-field around the flagellum diverge
to a greater extent horizontally than vertically. This suggests that particles from this
region are most likely to experience more mixing than if they began in either the near
or far fields. This does not mean that particles in the near field will not experience
significant motion. It merely shows that the trajectories of particles within the near
field do not significantly diverge from one another. This could be due to the larger
forces created near to the flagellum which do not allow the particles to deviate from
a similar path line to their neighbours. In the opposite sense, the far field will not
be so significantly affected by the flagellum. Therefore, particles here only move a
small distance and will not have the ability to diverge from their neighbours. We refer
to Blake (1971) where the image system for a stokeslet in a no-slip boundary was
discussed. Results showed how the velocity and force fields are O(r−2) for horizontal
forces and O(r−3) for forces in the vertical direction. Thus we would expect much
stronger radial than vertical eddying motion, which is evident from the particle paths,
see figure 5. Indeed, the ‘loops’ show features of a stresslet far field associated with the
horizontal forces whereas the vertical forces are observed to have a weaker far-field
eddy-generating effect.

Earlier studies using a very idealized model of micro-organism feeding and mixing
(Blake et al. 1998; Otto et al. 2001; Orme et al. 2001a, b) showed how chaotic mixing
can facilitate filtration of nearby liquid. This study also suggests that the characteristic
eddy structure allows filtration of the liquid in the intermediate region surrounding
the organism. The size of the intermediate region increases with the height of the
flagellum above the wall, which in the case of chaonoflagellates is facilitated by the
presence of the stalk. Pettitt et al. (2002) considered the role of the stalk in three
different organisms. This uses a simplified hydrodynamic model by representing the
flagellum as a line distribution of stokeslets consistent with the dimensions of the
organism and analysing the resultant toroidal eddy shape; findings are broadly in
agreement with observation.

4. Conclusions
We have presented a method using Green’s functions to allow particle paths around

a model organism to be generated. The model is a simplified representation of the
substrate, cell body and flagellum of a choanoflagellate by the use of a number of
singularities along with their associated image systems. The collar is neglected (and
the stalk is only present in a virtual sense) but this is believed to be a good model to
represent the flow fields around such an organism.

The use of numerics in this work will allow further investigations to be undertaken
by biologists or mathematicians. By generating particle paths found numerically for
a certain set of length scales which describe the problem, one could compare these
to experimental observations to find estimates of the unknown cell body radius,
flagellum length or height above the substrate. The work presented also gives a basis
for a mathematical model which could include the collar of the organism. This would
increase the accuracy of the results and may enable the numerics to represent the
experiments to an even greater degree of accuracy.

We have shown that our results provide a valuable qualitative understanding of
the experimental observations, therefore allowing the numerics to act as a tool for a
variety of further investigations or studies. For example, the region where the collar
will be situated is seen to have a greater level of mixing than the far field. Influencing
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mixing of particles is highly beneficial biologically as previous work of Blake et al.
(1998) has suggested. These results also compare well with theoretical work by Blake
(1971) and Higdon (1979a).

The first author would like to acknowledge Dr Michala Pettitt for providing
experimental data and the helpful comments provided by Dr Peter Hydon. Acknowl-
edgements are also due to the EPSRC for funding the first author.

Appendix A. Singularity expressions as components of the image systems
The image systems are composed of a set of singularities which were stated in

Higdon (1979a). The expression given in Oseen (1927) for the image system of a
stokeslet is difficult to manipulate due to its dependence on the coordinate y, but
considering an expansion of the expression about the origin for A� |y| leads to
simpler expressions. Since we can find the images of the Stokes-doublet and dipole
by differentiating the expression for the image of a stokeslet (by the rule stated in
§ 2.4), it is sensible to look for an easily differentiable form of the image system for
the stokeslet, S∗jk .

The expansion given in Higdon (1979a) for the image system of a stokeslet is
composed of the first-order and the second-order terms of the expansion about
the origin. The second-order terms are divided into symmetric and antisymmetric
components which are denoted by the superscripts S and A respectively in this
appendix. Denoting the first-order terms by W and the second-order symmetric and
antisymmetric terms by WS and WA, we write the expansion for the image of the
stokeslet as

S∗jk(x, y) =

(
δkm

|y| +
ykym

|y|3
)
Wjm(x) +

(
ykymyn

|y|5
)
WS

jmn(x) +

(
ym

|y|3
)
WA

jkm(x), (A 1)

where

Wjk(x) = − 3
4
A

(
δjk

|x| +
xjxk

|x|3
)

+ 1
4
A3

(
− δjk|x|3 +

3xjxk
|x|5

)
,

WS
jkl(x) = − 5

2
A3

(
−xjδkl|x|3 +

3xjxkxl
|x|5

)
+ 3

2
A5

(
−xjδkl + xkδjl + xlδjk

|x|5 +
5xjxkxl
|x|7

)
,

WA
jkl(x) = A3

(−δjkxl + δjlxk

|x|3
)
.

We can differentiate equation (A 1) to obtain the images of the higher-order
singularities. Because a Stokes-doublet can be derived from differentiating the stokeslet
with respect to yl , then the image of a Stokes-doublet is derived from differentiating
equation (A 1) with respect to yl . This gives

SD∗jk (x, y) = −
[(
−ymδkl|y|3 +

3ykylym
|y|5

)
+

(
ylδkm − ykδlm

|y|3
)]

Wjm(x)

−
[
−δklymyn + δlmykyn + δlnykym

|y|5 +
5ykylymyn
|y|7

]
WS

jmn(x)

−
[
δlm

|y|3 +
3ylym
|y|5

]
WA

jkm(x). (A 2)
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Similarly, the image system for the dipole is found by differentiating once again the
image system for the stokeslet (as described in § 2.4), to give

D∗jk(x, y) =

[
− δkm|y|3 +

3ykym
|y|5

]
Wjm(x)

+

[
−δkmyn + δknym + δmnyk

|y|5 +
5ykymyn
|y|7

]
WS

jmn(x). (A 3)

Equations (A 1), (A 2) and (A 3) explicitly give the sphere images needed throughout
the problem and referred to in § 2.4.

Appendix B. Singularity expressions from the combined image system
The combined image system consists of a number of previously defined expressions

which include the image system for the plane (Š jk) and the image system which is

developed from the image of the plane in the sphere (Š∗jk). Both these expressions are
explicitly stated below in equations (B 1) and (B 2) respectively.

The image system for the plane is constructed from a stokeslet, a Stokes-doublet
and a dipole, all considered at the image point in the plane, y̌, defined in equation
(2.8). The total image system for the plane is given by

Š jk = −Sjk(x, y̌) + 2h(y)pl[δkm − pkpm]SDjlm(x, y̌)− 2h2(y)[δkm − pkpm]Djm(x, y̌). (B 1)

Finally, the most complicated expression we need is for the sphere images of the
plane image system, the latter given as Š jk in equation (B 1). We need to use this in
equation (2.10) as a constituent of the first approximation to the Green’s function for
the whole system. We need to consider evaluation of the stokeslet, Stokes doublet and
dipole terms within the plane image system at the image point, y̌. Hence, we take the
image system for the plane (Š jk), and evaluate it at the image point in the sphere. We
define the sphere image of the plane image system as

Š ∗jk = −S∗jk(x, y̌) + 2h(y̌)pl[δkm − pkpm]SD∗jlm(x, y̌)− 2h2(y)[δkm − pkpm]D∗jm(x, y̌), (B 2)

which contains the same terms as equation (B 1), i.e. the stokeslet, Stokes-doublet and
dipole respectively, evaluated at the image point in the sphere (denoted by *).
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